圧電材料基板上のマイクロ流路を用いた 単分散多相エマルション生成法の開発

東京工業大学精密工学研究所

西迫貴志

Monodisperse double emulsions (also referred to as multiple emulsions) have numerous potential applications in various fields, such as cosmetics, pharmaceutics, food, and colloid science. In conventional two-step mixing technique, however, it is difficult to produce monodisperse double emulsions. Here, we propose a novel microfluidic technique to produce monodisperse double emulsions by applying surface acoustic wave (SAW) streaming. The microfluidic device consists of two planar substrates: a piezoelectric substrate with interdigital transducers (IDTs), and a polymethyl metacrylate (PMMA) plate with microfabricated grooves. The IDTs were fabricated on a planar piezoelectric (LiNbO3) substrate by conventional lithographical technique. The microgrooves on the PMMA substrate were fabricated by mechanical machining. The microchannel geometry consists of a Y-shaped junction to infuse aqueous and organic phases and to generate a water-in-oil (W/O) emulsion by SAW, and a sheath-flow geometry to form water-in-oil-in-water (W/O/W) double emulsions by shear-rupturing mechanism. First, by generating SAW, we could produce polydisperse W/O emulsion droplets of 1-10 μ m in diameter at the Y-junction. Then, at the sheath-flow junction, organic droplets encapsulating fine aqueous droplets (i.e., W/O/W emulsion droplets) could be reproducibly formed in the external aqueous stream. The breakup rate was approximately 200 drops / s⁻¹. The produced W/O/W droplets were highly monodisperse, with a mean diameter of 150 μ m and a coefficient of variation (CV) below 5 %.

1. 緒 言

これまで、コスメトロジーに関する分野¹⁻⁵⁾ に限らず、 医学、薬学、食品科学、コロイド科学等を含めた幅広い分 野において、多相エマルション(図1)の潜在的応用事例 について数多くの研究が成されてきた. にもかかわらず、 実際に実用化された事例は数少ないと言える. こうした現 状の背景としては、従来技術(二段階攪拌法,図2)では、 液滴サイズや内包率が高精度に制御された多相エマルショ ンを簡便に調製できなかったという事情が挙げられる. 特 に、サイズのばらつき(多分散性)に由来する多相エマル ションの不安定性は、実用化における最も大きな障害であ ると考えられる.

一方,筆者は近年,マイクロ流路の2段階分岐構造を用 いた単分散多相エマルション生成法を開発した^{6.7)}.この 手法は,外部液滴と内部液滴をともに単分散状に調製でき るほか,内包液滴数を精密に制御できるという長所を有す る.しかし本手法には,(a)流路壁面の局所的な化学修飾 が必要であるため装置作製が難しい,(b)流路の目詰ま りや圧力損失の増大といった制限から,1~数μmの内包 滴の生成が困難,といった課題があった.

Preparation of monodisperse double emulsions in microfluidic channels on a piezoelectric substrate

Takasi Nisisako

Precision and Intelligence Laboratory, Tokyo Institute of Technology そこで本研究では、弾性表面波(Surface Acoustic Wave, SAW)の機械振動とマイクロ流路の分岐構造を組み合わ せて単分散多相エマルションを生成する手法を提案する。 弾性表面波とは基板表面を伝播する超音波振動のひとつ であり、圧電材料基板上に配置した櫛型電極(interdigital transducer, IDT)に高周波電圧を印加することで発生さ せることができる。現在、弾性表面波デバイスは通信用の 電子回路素子として広く普及しているが、その一方で、霧 化⁸⁻¹⁰、微小液滴や微小物体の搬送¹¹⁻¹⁵⁾、液相の混合^{16,17)} 等、微小液体のハンドリング方法に関する数多くの研究 事例が近年報告されている。図3に、water-in-oil-in-water (W/O/W)型の多相エマルションを例として、本研究で 提案する技術の概要を示す。本技術における多相エマルシ ョン生成手順は、以下の(1)~(4)から構成される:

- (1) IDT を配置した圧電基板とマイクロ流路基板を図3 のように貼り合せる.
- (2) Y字路に内水相と有機相を導入し,低レイノルズ数 (Re<<1)の二相流を形成する.
- (3) IDT へ高周波電圧を印加して SAW を放射させて二相 流に作用させ、W/O エマルションを得る.
- (4)下流部の分岐路で外水相を合流させて分散相をせん断し、単分散 W/O/W 液滴を連続的に得る.

本研究課題では、上記の手法により、内包滴の平均径が 1-10µm 程度であり、且つ外部液滴径の変動係数(=標 準偏差÷平均径, CV 値)が5%以下である、単分散多相 エマルションの調製を目標とした.

図1 多相エマルション概念図. (a) water-in-oil-in-water (W/O/W)型. (b) oil-in-water-in-oil (O/W/O)型.

図3 弾性表面波(SAW)を用いた多相エマルション生成法の概念図.

2. 実 験

2・1 IDT 電極の作成

圧電材料基板として 128° Y カットのニオブ酸リチウム (LiNbO₃)(伝播方向:X 軸方向,厚さ 1.0 mm,山寿セラ ミックス)基板を用い,表面にフォトリソグラフィにより 10 対の IDT を作成した(図4).この IDT に交流電圧を 印加することにより,基板表面に弾性表面波の一種である レイリー波を励振,電波させることができる.電極サイズ は,電極幅 0.2 mm,電極間距離 0.2 mm,電極交差幅 4 mm とした.電極はスパッタリングにて Tiを 100 nm, Au を 100 nm を順に堆積させることで作製した.

2・2 マイクロ流路加工

アクリル樹脂(PMMA) 基板上に,エンドミル(刃径: 100µm)を用いた機械加工によってマイクロ流路の分岐 構造を作成した.加工溝の断面は矩形状であり,流路の幅 は最小部で100µm,深さは一様に100µmとした.加工溝 の密封は透明粘着テープによって行い,IDT 電極を作成 した圧電基板と互いに貼り合せた状態で使用した.

2・3 材料

W/O/Wエマルションの内水相としてイオン交換水 (18.0 MΩ・cm),中間相としてデカン(和光純薬工業) に脂溶性界面活性剤(CR-310,阪本薬品工業)を1.0 wt% 添加したもの,外水相として超純水にポリビニルアルコール (PVA)を 2.0 wt%添加したものを用いた.

2・4 その他の機材

IDTへの高周波電圧の印加には,RF発生源であるアマ チュア無線機(IC-703,アイコム)を使用した.スペク トラムアナライザ(U3751,アドバンテスト)を用いて SAW 基板の周波数特性を測定し,その結果から駆動周波 数として主に 50MHz を選択した.

マイクロ流路内の観察は、光学式顕微鏡(BX-51,オリ ンパス)に高速度ビデオカメラ(フォトロン、Fastcam-1024PCI)を組み合わせて行った.流路内への各液体の 送液および流量制御にはシリンジポンプ(KDS200,KD Scientific)およびガラスシリンジ(Hamilton)を組み合 わせて用いた.生成液滴径の測定は、デジタルデータの画 像処理によって行った.

3. 結果

3・1 W/O/W 多相エマルションの生成

図5に、SAW による二液混合とマイクロ流路分岐構造 での液滴生成を組み合わせた W/O/W エマルション生成 の様子を示す.まず印加電圧を $25V_{pp}$ にし、内水相と中間 相の流量をともに $0.5mL h^{-1}$ としたところ、Y 字路近傍で内 水相と中間相が粗く混合し、直径 $10-150\mu m$ 程度でばら つきの大きい水滴が有機相中に生成される様子が観察され た.この状態で 2 つの外水相流の流量をともに $4.0mL h^{-1}$ と したところ、合流箇所にて、水滴を内包した有機相滴が外 水相流中に高速で連続生成される様子が観察された(図 5a).高速度ビデオカメラによる映像で確認したところ, 液滴生成周期は毎秒200個程度であった.ただし内水相液 滴サイズのばらつきが大きく,且つ分岐路への供給が不規 則に行われたため,内包液滴個数にも大きなばらつきがあ った.

印加電圧を 35V_{PP} とした際の W/O/W 液滴生成の様子 を図 5b に示す.印加電圧を上昇させることでより強力な SAW を発生させ,より径の小さい1-10μm 程度の W/O エマルション滴が生成される様子を確認することができた. ただし,SAW によるミキシングは連続的ではなく間欠的 に生じたため,W/O エマルションに密な部分と疎な部分 が生じる様子が観察された.下流部の液滴生成地点では外 水相流中に毎秒 200 個程度の速度で W/O/W エマルショ ン滴が連続生成される様子を確認することができた.ただ し,生成される W/O/W 液滴には,内包率のばらつきが 観察された.

3・2 生成された W/O/W エマルション滴

図 6a に生成された W/O/W 多相エマルションの顕微鏡 写真を示す.外部液滴サイズのほぼ均一な W/O/W 液滴 が得られていることがわかる.外部液滴の平均径は約 149 µm, CV 値は 4.2%であった(図 6b).一方,内包されて いる水滴のサイズは直径 1 µm 以下から 10 µm 程度の間で ばらついており,多分散状であった.さらに,内水相と中 間相の比率が1:1になるように流量条件を設定したもの の,外部液滴によっては水滴をあまり含まず明らかに内水

図4 作成した IDT 電極の顕微鏡写真.

図5 W/O/W エマルション生成の様子. (a) 印加電圧 25V_{pp} の場 合. (b) 印加電圧 35V_{pp} の場合. 流量条件は,内水相と中間相が ともに 0.5 mL h⁻¹,外水相が 8.0 mL h⁻¹ (4.0 mL h⁻¹ × 2). スケー ルバーは 200µm.

相の体積分率が 50%を下回るものも観察され,各外部液 滴の水滴内包率には大きなばらつきがあった.なお,生成 したエマルションを1時間程度放置して後に観察したとこ ろ,合一による多分散化は確認されず,単分散性を保って いた.

4. 考察

印加電圧が小さい場合、サイズおよびばらつきの大き いW/Oエマルションが生成されたが、印加電圧を上昇さ せることで、これを改善することが可能であった. しかし 印加電圧を上昇させると IDT 電極周囲の温度上昇につな がり, これによるマイクロ流路の変形, 破損や液体材料成 分の変性等が懸念される.この問題を解決するためには, SAW 励振のための入力波を単純なサイン波ではなく、高 周波と低周波の2つを組み合わせたものにする (バースト 駆動)こと、およびペルチェ素子等の冷却機構を装置に組 み込むことが有効であると予想される.また、印加電圧を 上昇させた場合においても W/O エマルションに疎, 密な 部分が生じたが、これは SAW によるミキシングが連続的 ではなく間欠的で不安定であったためと考えられる。これ を改善するには、SAW 励振の入力波の条件検討とともに、 マイクロ流路内に Passive な混合を行える構造を設けるこ とも有効と考えられる.

W/O/W エマルションの外部液滴に関しては、CV 値4 %程度の液滴径分布を確認することができた. この CV 値 は、既存の多相エマルション生成法による値(数十%)に 比べると格段に良い値であり、生成物は十分に単分散であ ると言える.しかしながら一方では、マイクロ流路分岐構 造を用いた液滴生成法で一般的な CV 値(1 – 3%)に比 べると、やや大きな値となっている.これは、SAW によ って生成されてマイクロ流路分岐に供給される W/O エマ ルションの濃度が流れの中で一様ではなく、そのため流れ に見かけ上の粘度のむらが生じ、外部液滴の生成をやや不 安定にしたためと考えられる.

5. 総 括

以上のように、弾性表面波による二液体の混合技術と、 マイクロ流路の分岐構造を用いた液滴生成法を組み合わせ、 単分散多相エマルションの生成が可能であることを明らか にした.本研究の手法では、マイクロ流路の二段分岐構造 を用いた単分散多相エマルション生成法に比べ、容易に内 包液滴を著しく小さくすることができ、また流路内の表面 処理も要さないという長所がある.また、本手法により生 成される多相エマルションは単分散性に優れるため、従来 手法による多分散の生成物に比べて、経時安定性の大幅な 改善が見込まれる.また本手法では、外部液滴サイズ、内 部液滴サイズ、および内包率を容易且つ高精度に制御でき るため、不安定薬剤の安定化、内包成分の徐放特性、経時 安定性やレオロジー特性等を評価するためのモデル系の調 製手段としても有効と考えられる.

今後,諸条件の検討により,SAW 発生における発熱や 安定性の問題を解決することで,より簡便な多相エマルシ ョン生成法として本技術が利用可能になることが期待され る.また,現状の装置では1流路素子での生産量は最大で

図 6 生成された W/O/W 多相エマルション滴と液滴径分布. (a)W/O/W エマルション滴の顕微鏡写真. 生成流量条件は 内水相と中間相がともに 0.5 mL h⁻¹, 外水相が 8.0 mL h⁻¹ (4.0 mL h⁻¹ × 2). (b) 外部液滴径分布. 平均径 149µm, CV 値 4.2%.

1g/h 程度にすぎないため、産業界における大量生産の要 望に応えるためには生産量の大幅なスケールアップが求め られる.これには、リソグラフィ技術の利用による、流路 および電極の集積化が有効であると考えられる.たとえば 100 - 1000本の流路の集積化により数百g/h ~数kg/h の生産量が見込まれるが、この生産量は数~数+トン/年 の生産量に相当し、パイロットプラント用装置として十分 なスループットであると考えられる.なお現時点で、流路 の集積化によるエマルション生成のスケールアップに関し ては実証済みである¹⁸⁾.今後、電極を集積化した圧電基 板上への100 - 200流路の配置により、上記の生産量を達 成することが可能と考えられる.

謝 辞

本研究を遂行するに当たり,ご支援をいただきました財 団法人コスメトロジー研究振興財団に深く感謝いたします.

(引用文献)

- 1) Bonina F, Bader S, Montenegro L, et al., : Three phase emulsions for controlled delivery in the cosmetic field, Int. J. Cosmet. Sci., 14, 65-74, 1992.
- Yoshida K, Sekine T, Matsuzaki F, et al., :Stability of vitamin A in oil-in-water-in-oil-type multiple emulsions, J. Am. Oil Chem. Soc., 76, 195-200, 1999.
- 3) Sekine T, Yoshida K, Matsuzaki F, et al., : A novel method for preparing oil-in-water-in-oil type multiple emulsions using organophilic montmorillonite clay mineral, J. Surfactants Deterg., 2, 309-315, 1999.
- 4) Miyazawa K, Yajima I, Kaneda I, Yanaki T, : Preparation of a new soft capsule for cosmetics, J. Cosmet. Sci., 51, 239-252, 2000.
- 5) 関根知子,:第3章 マルチプルエマルションの調製 法と特徴,角田光雄監修:機能性エマルションの技術と 評価,シーエムシー出版,東京,3445,2002.
- 6) Okushima S, Nisisako T, Torii T, Higuchi T,
 : Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices, Langmuir, 20, 9905-9908, 2004.
- 7) Nisisako T, Okushima S, Torii T, : Controlled formation of monodisperse double emulsions in a

multiple-phase microfluidic system, Soft Matter, 1, 23-27, 2005.

- 8) Kurosawa M, Watanabe T, Futami A, Higuchi T,: Surface acoustic wave atomizer, Sens. Actuator A-Phys., 50, 69-74, 1995.
- 9) Chono K, Shimizu N, Matsui Y, et al., Development of novel atomization system based on SAW streaming, Jpn J. Appl. Phys., 43, 2987-2991, 2004.
- 10) Kim JW, Yamagata Y, Takasaki M, et al., : A device for fabricating protein chips by using a surface acoustic wave atomizer and electrostatic deposition, Sens. Actuator B-Chem., 107, 535-545, 2005.
- Wixforth A, Strobl CJ, Gauer C, et al., Acoustic manipulation of small droplets, Anal. Bioanal. Chem., 379, 982-991, 2004.
- 12) Guttenberg Z, Müller H, Habermüller H, et al., : Planar chip device for PCR and hybridization with surface acoustic wave pump, Lab Chip, 5, 308-317, 2005.
- Yamamoto A, Nishimura M, Ooishi Y, et al., : Atomization and stirring of droplets using surface acoustic wave for integrated droplet manipulation, J. Robotics Mechatronics, 18, 146-152, 2006.
- 14) Renaudin A, Tabourier P, Zhang V, et al., : SAW nanopump for handling droplets in view of biological applications, Sens. Actuators B-Chem., 113, 389-397, 2006.
- 15) Smorodin T, Beierlein U, Ebbecke J, Wixforth A, : Surface-acoustic-wave-enhanced alignment of thiolated carbon nanotubes on gold electrodes, Small, 1, 1188-1190, 2005.
- 16) Sritharan K, Strobl CJ, Schneider MF, et al., : Acoustic mixing at low Reynold' s numbers, Appl. Phys. Lett., 88, 054102, 2006.
- 17) Guttenberg Z, Rathgeber A, Keller S, et al., : Flow profiling of a surface-acoustic-wave nanopump, Phys. Rev. E, 70, 056311, 2004.
- Nisisako T, Torii T, : Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles, Lab Chip, 7, 287-293, 2008.